Monatshefte für Chemie 102, 1689—1698 (1971) © by Springer-Verlag 1971

Kristallstruktur von Cu₁₀Sn₃(m)

Von

J. Lenz und K. Schubert Aus dem Max-Planck-Institut für Metallforschung, Stuttgart

Mit 2 Abbildungen

(Eingegangen am 6. April 1971)

Crystal Structure of Cu₁₀Sn₃(m)

 $Cu_{10}Sn_3(m)$ has a hexagonal structure, which is closely related to the structure of CuZn. One of the main differences of these structures is a stacking variation of the layers parallel (111)_{CuZn}, which implies further shifts of atoms so that the structure may also be described as a variant of the NiAs structure. Causes for the stacking variation may be derived from assumptions on the spatial correlation of the electrons.

 $Cu_{10}Sn_3(m)$ hat eine hexagonale Struktur, die in enger Verwandtschaft zur Struktur des CuZn steht. Einer der Hauptunterschiede beider Strukturen ist eine Stapelvariation der Schichten parallel (111)_{CuZn}. Aus dieser folgen weitere Verschiebungen der Atome, so daß die Struktur auch als Variante der NiAs-Struktur beschrieben werden kann. Gründe für die Stapelvariation lassen sich aus Annahmen über die Ortskorrelation der Elektronen herleiten.

Einleitung

Die messingartigen Legierungen haben in den dreißiger Jahren im Vordergrund des Interesses gestanden, sind aber auch heute noch nicht vollständig erforscht oder gar verstanden. Man versprach sich damals aus der Anwendung einfacher elektronentheoretischer Modelle eine Einsicht in die Gesetzmäßigkeiten des Aufbaues dieser Legierungen, d. h. also in die chemische Bindung in ihnen. Diese Hoffnung hat sich jedoch nicht erfüllt, die Suche nach einem brauchbaren Modell für den atomistischen Bau der messingartigen Legierungen muß also fortgesetzt werden. Eine Voraussetzung für diese Suche ist die sorgfältige Erarbeitung des empirischen strukturellen Erscheinungsbildes der messingartigen Legierungen. Solche Untersuchungen müssen nicht notwendig im Messingsystem Cu—Zn durchgeführt werden; so konnten z. B. H. Nowotny und Mitarb. die den Betamessing-Phasen verwandten Fluoritstrukturen besonders vorteilhaft in ternären Legierungen studieren¹⁻⁵ und dabei mehrere Gesetzmäßigkeiten aufklären. Besonders die Beobachtung der Auffüllung der Fluoritstruktur zur Betamessingstruktur, die sich an mannigfachen Beispielen verfolgen läßt⁶, zeigt, daß bei allen diesen Phasen ein und derselbe abwandlungsfähige Bindungszustand vorliegt. In Fortsetzung dieser Untersuchungen war es von Interesse, auch Verzerrungsvarianten der Betamessingstruktur zu studieren. Eine solche Struktur gibt es im System Cu—Sn.

Die metastabile Phase $Cu_{10}Sn_3(m)$ hat nach *Carlsson* und *Hägg⁷* eine hexagonale Zelle, a = 7,331 Å, c = 7,870 Å, mit 26 Atomen in der Elementarzelle. Die Pulveraufnahme hat eine große Ähnlichkeit mit den Strukturen von $Cu_{41}Sn_{11}$ (500° C) und $Cu_{-4}Sn$ (700° C) (γ -Phase), weshalb die Autoren vermuteten, daß sie durch die Ordnung der Komponenten und Leerstellen in der W-Typ-artigen Unterstruktur entstünde. Das ist jedoch nicht ganz der Fall; man muß vielmehr, wie systematische Betrachtungen zeigen, eine große Ähnlichkeit zur Struktur von Cu_3P (und Cu_3As) erwarten, die sich durch eine besondere Stapelfolge⁸ der Schichten, welche parallel zur hexagonalen Basisebene von Cu_3P liegen, auszeichnen. Da die früheren Intensitätsberechnungen ⁷ unbefriedigend waren, wurde, obwohl die Abstände der Atome in dem früheren Vorschlag annehmbar waren, eine Neubestimmung der Struktur in Angriff genommen.

- ¹ H. Nowotny und W. Sibert, Z. Metallkde. 33, 391 (1941).
- ² H. Nowotny, Z. Metallkde. 34, 237 (1942).
- ³ H. Nowotny, Wiener Chemiker-Ztg. 47, 12 (1944).
- ⁴ H. Nowotny und K. Bachmayer, Mh. Chem. 81, 488 (1950).
- ⁵ H. Nowotny und B. Glatzl, Mh. Chem. 83, 237 (1952).
- ⁶ H. Nowotny, Berg-Hüttenm. Mh. 95, 109 (1950).
- ⁷ O. Carlsson und G. Hägg, Z. Krist. 83, 308 (1932).
- ⁸ K. Frank und K. Schubert, Acta Cryst. B 27, 916 (1971).

Abb. 1. a) Dieselbe Legierung und Warmbehandlung und Schliffstelle wie Abb. 1b, neu geschliffen, ungeätzt, polarisiertes Licht $(100 \times)$. Homogen $Cu_{10}Sn_3(m)$, nach Aussage der Pulverröntgenaufnahme. Farbumschlag von hellgelb bis dunkel-oliv. Keine martensitischen Domänen erkennbar. Der mittlere Kristall ist durch das Schleifen größer geworden. b) $Cu_{78,2}Sn_{21,8}$ (3 d 690° C, Wa) mit 10proz. FeCl₃-Lösung 2 Min. ätzpoliert. Im polarisierten Licht $(100 \times)$ ist eine Domänenstruktur erkennbar. Die schwarzen Nadeln dürften mit der Ausscheidung von Cu_3Sn aus $Cu_{10}Sn_3$ zusammenhängen. Wurde diese Legierung anschließend (24 Stdn., 620° C, Wa) warmbehandelt, war der Anteil Cu₃Sn gänzlich eingeformt. c) $Cu_{81,0}Sn_{19,0}$ (2 Stdn. 700° C, Wa), ätzpoliert wie bei Abb. 1b. Isotropes Licht (500 ×). $Cu_{\approx4}Sn$ (700° C) ist zerfallen in Cu_4Sn (500° C) und Cu. Auch im polarisierten Licht ist keine Domänenstruktur erkennbar. Nach Warmbehandlung (20 Stdn., 490° C, Wa) ist Cu_4Sn (500° C) und vergröbertes Cu— Cu_4Sn (500° C) Eutektoid erkennbar

Monatshefte für Chemie, Bd. 102/6

Versuchsergebnisse

Legierungen der Zusammensetzung Cu_{78,2}Sn_{21,8} wurden aus Elementen einer Reinheit > 99,9% im Gewicht von 1 g unter 200 Torr Argon in Quarzampullen mit der Warmbehandlung (20 Min., 1200°C) erschmolzen, mit (20 Stdn., 700° C) in derselben Ampulle homogenisiert und schließlich in Wasser abgeschreckt. Röntgenaufnahmen so behandelter Legierungen zeigten das Vorliegen der Cu₁₀Sn₃(m)-Struktur. Gewichtsverluste unter 0,5% erlaubten, auf eine nachträgliche chemische Analyse zu verzichten. Die Anschliffe der so behandelten Legierungen zeigten im Polarisationsmikroskop große, nicht martensitische Kristallite; wurde jedoch etwa 2 Min., mit 10% FeCl3 ätzpoliert, so entstand eine im polarisierten Licht besonders gut erkennbare Domänen-Unterteilung der Kristallite (Abb. 1a und b). Nach einer Warmbehandlung (12 Stdn., 620° C) war ein wenig Cu₃Sn erkennbar und die Domänenstruktur konnte ebenfalls erhalten werden. Man muß die Domänenstruktur auf einen quasimartensitischen Umwandlungsverlauf des Cu₁₀Sn₃(600°C) in das Cu10Sn3(m) zurückführen, etwa derart, daß in einem Einkristall verschiedene Bereiche kleine Drehungen der Atomdreiecke von Cu₁₀Sn₃(h) zeigen, die in verschiedenen Richtungen verlaufen waren. Auch bei der y-Phase wurde eine Domänenstruktur gefunden⁹; man muß diese auf ähnliche Drehungen wie bei Cu10Sn3 zurückführen, da Cu81Sn19 (700°, Wa) keine Domänen zeigte (Abb. 1c).

Weißenbergaufnahmen von quasikugelförmigen mit der Warmbehandlung (5 Stdn. 700° C, Wasserabschreckung, oder 12 Stdn. 620° C, Wa) entspannten Einkristallen zeigten eine holoedrische hexagonale Lauesymmetrie und ferner mit Hilfe der Gitterkonstanten von Carlsson/Hägg das Auslöschungsgesetz ,,(00l) nur mit l = 2n", das von diesen Autoren übersehen worden war. Die aus diesen Angaben eindeutig zu bestimmende Raumgruppe P6₃22 gestattete keinen befriedigenden Strukturvorschlag, wenn man die von uns durch Atomvolumenbetrachtungen bestätigten Atomanzahlen von Carlsson/Hägg zugrunde legt. Es wurde deshalb in der hemiedrischen Raumgruppe C²_{6h}P6₃/m ein Strukturvorschlag aufgestellt, der sich, wie Tab. 1 zeigt, in befriedigender Weise verfeinern ließ. Es muß also angenommen werden, daß die Holosymmetrie durch eine mit Temperungen nicht zu beseitigende Domänenbildung nur vorgetäuscht wird. Zu Vergleichszwecken geben wir noch die Auswertung eines Pulverdiagramms bei (Tab. 2).

Die Struktur ist in Abb. 2 gezeichnet. An Stelle von 9 Schichten in dem früher aufgestellten Strukturvorschlag⁷ finden sich im wesentlichen nur 6 Schichten. Um die Stapelfolge dieser Schichten festzulegen, bezeichen wir $0.0, z = \mathbf{A}, 1/3, 0, z = \mathbf{B}, 2/3, 0, z = \mathbf{C}$ und fordern wegen des

⁹ H. Knödler, Metall 18, 1172 (1964).

H. 6/1971]

Tabelle 1. Struktur und Weißenbergaufnahme von $Cu_{10}Sn_3(m)$

Experiment: Cu_{78,2}Sn_{21,8} (Regulus 20Stdn. 700°C, Wa; Kristalle 5Stdn., 700°C, Wa). Einkristall hatte rundliche Gestalt. 4 *Weißenberg*aufnahmen um [110] mit 14 h CuK α , je drei Filme mit 0,05 mm starker Aluminiumzwischenlage, visueller Intensitätsvergleich.

Struktur: $Cu_{10}Sn_3(m)$ -Typ, $C_{6h}^2P6_3/m$, a = 7,33 Å, c = 7,87 Å; 2 Cu(b), x = ,0; y = ,0; z = ,0; 2 Cu(d),667,333,25; 4 Cu(f),333,667,093; 12 Cu(i),666,031,080; 6 Sn(h),305,987,25.

Verarbeitung: Keine Absorptionskorrektur, kein Temperaturfaktor. $\Sigma \mid |F_c| - |F_0| \mid |\Sigma \mid F_0 \mid = 0,19$. Die F_c von zwei hemiedrisch verschiedenen Indizes wurden gemittelt und mit den zugehörigen F_0 verglichen.

(hkl)	F_0	F_{c}	(hkl)	F_0	F_c	(hkl)	F_0	F_{c}
(002)	78	67	(445)	27	39	(323)	&	170
(004)	159	143	(011)	7	1	(234)	33	2
(006)	497	444	(012)	44	23	(324)	&	38
(008)	150	108	(013)	83	77	(235)	70	46
(0010)	85	49	(014)	64	71	(325)	ðz	68
(111)	78	102	(015)	30	23	(236)	109	135
(112)	89	86	(016)	48	75	(326)	æ	21
(113)	326	402	(017)	36	15	(237)	58	53
(114)	42	32	(018)	49	34	(327)	&	37
(115)	118	64	(019)	39	38	(238)	38	14
(116)	140	119	(120)	77	66	(328)	&	58
(117)	110	86	(210)	æ	111	(340)	88	37
(118)	72	23	(121)	68	53	(430)	æ	43
(119)	255	242	(211)	&	82	(341)	37	2
(220)	70	46	(122)	55	76	(431)	&	44
(221)	83	86	(212)	å	51	(342)	99	44
(222)	87	71	(123)	121	127	(432)	&	87
(223)	297	312	(213)	åz	109	(343)	49	44
(224)	36	27	(124)	43	22	(433)	&	25
(225)	94	60	(214)	å	33	(344)	125	95
(226)	123	98	(125)	58	62	(434)	&	138
(227)	89	77	(215)	&	50	(345)	40	19
(228)	60	23	(126)	113	13	(435)	æ	61
(229)	187	206	(216)	æ	137	(346)	63	75
(330)	390	399	(127)	61	23	(436)	å	9
(331)	17	4	(217)	&	63	(450)	95	94
(332)	54	48	(128)	20	9	(540)	&	120
(333)	25	12	(218)	å	12	(451)	82	48
(334)	95	97	(129)	72	75	(541)	&	133
(335)	17	5	(219)	&	60	(452)	37	68
(336)	240	271	(230)	83	105	(542)	&	48
(337)	12	2	(320)	æ	43	(453)	33	98
(440)	48	37	(231)	84	66	(543)	&	53
(441)	48	50	(321)	&	61	(020)	41	33
(442)	46	57	(232)	109	76	(021)	10	4
(443)	148	155	(322)	&	128	(022)	76	98
(444)	37	22	(233)	191	155	(023)	174	166

108*

Fortsetzung	(Tabelle	1)
-------------	----------	----

(hkl)	F_0	F _c	(hkl)	F_0	Fc	(hkl)	F_0	Fc
(024)	14	4	(244)	48	27	(142)	81	64
(025)	25	14	(424)	&	42	(412)	&	69
(026)	96	84	(245)	74	83	(143)	277	258
(027)	22	11	<u>(</u> 425)	æ	65	(413)	&	255
(028)	26	18	(246)	114	143	(144)	35	23
(029)	113	94	(426)	&	29	(414)	ፚ	28
(130)	77	57	(247)	66	91	(145)	87	55
(310)	&	76	(427)	ðc	30	(415)	&	53
(131)	48	47	(350)	64	11	(146)	88	69
(311)	&	46	(530)	å	84	(416)	å	74
(132)	17	22	(351)	68	71	(147)	63	70
(312)	ðt	4	(531)	å	28	(417)	æ	67
(133)	42	37	(352)	65	123	(148)	39	20
(313)	& z	14	(532)	æ	66	(418)	&	16
(134)	83	97	(353)	174	158	(250)	27	11
(314)	ðī	74	(533)	ðc	143	(520)	å	0
(135)	48	62	(354)	36	54	(251)	49	60
(315)	&	19	(534)	æ	10	(521)	å	65
(136)	84	11	(355)	47	77	(252)	48	53
(316)	& c	111	(535)	&	18	(522)	&	44
(137)	37	16	(030)	498	602	(253)	162	164
(317)	&	47	(031)	11	1	(523)	å	170
(138)	60	57	(032)	64	60	(254)	30	20
(318)	&	48	(033)	13	1	(524)	&	11
(139)	16	20	(034)	140	123	(255)	37	48
(319)	å	3	(035)	15	1	(525)	å	52
(240)	130	115	(036)	504	373	(256)	59	59
(420)	&	96	(037)	16	1	(526)	ర్	50
(241)	88	108	(038)	111	102	(360)	188	220
(421)	&	54	(039)	10	1	(630)	&	220
(242)	40	35	(140)	45	14	(361)	19	2
(422)	&	32	(410)	&	20	(631)	&	16
(243)	63	45	(141)	79	76	(362)	21	32
(423)	&	84	(411)	&	72	(632)	ፚ	32
()			. ,			. ,	Cu ₁₀	Sn3(m)

angenommenen Einflusses der Elektronenkorrelation, daß die Mehrheit der Cu-Atome in einer Schicht das Stapelsymbol bestimmt. Dann erhält man, wenn man die Atome in ,0,0,0 bzw. ,0,0,50 wegen ihrer geringen Zahl nicht beachtet, das Stapelsymbol **CACBAB** = cchech, das auch bei Cu₃As vorliegt⁸. Die Sn-Atome befinden sich in einer genähert hexagonaldicht gepackten Lage. Die Cu umgeben die Sn in NiAs-Typartiger Weise; da aber die Auffüllung von Ni₂In weit überboten wird, kann die NiAs-artige Schichtenfolge Cu,Cu + Sn; Cu,Cu + Sn nicht aufrechterhalten werden, vielmehr findet man genähert Cu,Cu + Sn,Cu; Cu,Cu + Sn,Cu, d. h. eine "überaufgefüllte" NiAs-Variante.

Experiment: Cl_{178,2}Sh_{21,8} (Reg. 20Stdn. 700°C, Wa; Pul. 4 Stdn. 700°C, Wa), *Guinier*-Aufnahme CuKa, ohne Si-Eichung. $Struktur: Siehe Tab. 1: Cu_{10}Sn_3(m) \cdot Typ, a \approx 7, 3_{13} \text{ Å}, c = 7, 8_{46} \text{ Å}. \text{ Die Gitterkonstanten besitzen nur relativ zur ungeeichten von the state of the set of the set$ Aufnahme die dreistellige Genauigkeit.

Verarbeitung: $I_c = 10^{-4}$ HPLG | F_c |², nbt = nicht beobachtet.

(hkl)	$\sin^2 \theta_c$	$\sin^2\theta_0$	I_0	I_c	(hkl)	$\sin^2 \theta_c$	$\sin^2 \theta_0$	I_0	I_c	(hkl)	$\sin^2 \theta_c$	$\sin^2 \theta_0$	I ₀	Ic
(001)	,0096		\mathbf{nbt}	0	(221)	,1871	.1866	+ s	43	(141)	3202	4	8	40
(010)	0148	0146	SSS	33	(123)	1903	1898	m^+	151	(043)	3934	3	nht.	
(011)	0244	ļ	\mathbf{nbt}	0	(130)	1923	1918	ο C	21	(224)	3317	{	nht.	- er
(002)	0385	0385	so	22	(114)	1985	1	\mathbf{nbt}	9	(125)	3444	3455	SS SS	0.6 0.6
(110)	0444	0441	m	71	(131)	2019	2015	SS	25	(134)	3464	3476	4 u	4
(012)	0533	0537	\mathbf{st}	12	(024)	2133		\mathbf{nbt}	0	(000)	3469	2	S.	105
(111)	0540	æ	&	221	(222)	2160	2157	S	24	(142)	3491	3498	3 v.	58
(020)	0592	0589	SSS	ũ	(033)	2198	!	\mathbf{nbt}	0	(016)	3617	3626	SSS	19
(021)	0688	ļ	\mathbf{nbt}	0	(132)	2308	2306	SSS	en	(233)	3678	3668	u u	150
(112)	0829	0826	\mathbf{m}^+	94	(040)	2366	1	\mathbf{nbt}	0	(050)	3698		nht	
(003)	0867]	\mathbf{nbt}	0	(005)	2409	l	\mathbf{nbt}	0	(035)	3740	{	nht	- C
(022)	2700	0972	m^+	110	(041)	2463	l	\mathbf{nbt}	1	(051)	3794	,	nht.	
(013)	1015	1012	ш	66	(015)	2557	1	\mathbf{nbt}	¢1	(044)	3908	3910	i u	4
(120)	1035	1032	ш	75	(124)	2577		\mathbf{nbt}	7	(116)	3913	År.	Å.	43
(121)	1132	1128	ш	87	(223)	2642	2644	sť	395	(143)	3973	3982	st.	403
(113)	1311	1305	sst	1306	(042)	2752	2753	SSS	10	(330)	3993	- 2 2 2 2 2 2	2. 2.	244
(030)	1331	1327	sst	1443	(133)	2790	2789	SSS	7	(026)	4060	4072	y a	17
(122)	1421	1416	s^+	59	(230)	2810	2815	88	21	(052)	4083	- A	, <i>2</i> 2	37
(031)	1427]	\mathbf{nbt}	0	(115)	2853	2850	SS	15	(331)	4090	}	$_{\rm ht}$	
(023)	1459	1454	mst	184	(034)	2873	2871	+ 50	57	(240)	4141	4141	2	98 86
(004)	1542	1538	ss	23	(231)	2907	2913	80	26	(225)	4184	4193	u u u) -
(014)	1690	1684	SZ	31	(025)	3001	I	\mathbf{nbt}	,	(241)	4238	4940	2 v	44
(032)	1717	1711	so	23	(140)	3106	ł	\mathbf{nbt}	67			1	2	4
(220)	1775	1780	SSS	7	(232)	3196	3204	ä	78					

1695

Der Struktur von $Cu_{10}Sn_3(h)$ dürfte die Struktur von $Cu_{76}Ge_{24}$ (700° C) isotyp sein, weshalb diese Phase $Cu_{10}Ge_3(h)$ genannt werden kann. Zwar schließt die Phase den damit bezeichneten Homogenitätsbereich nicht ein¹⁰, aber im Hinblick auf die leichte Leerstellenbildung ist eine Verschiebung des Homogenitätsbereichs gegen Ge-reichere

Abb. 2. $Cu_{10}Sn_3(m)$, $C_{6h}^2P6_3/m$, a = 7,33 Å, c = 7,87 Å; 2 Cu(b),0,0,0; 2 Cu(d),667,333,25; 4 Cu(f),333,667,093; 12 Cu(i),666,031,080; 6 Sn(h),305,987,25

Zusammensetzungen verständlich. Bislang war nur die Unterstrukturzelle mit a = 4,17 Å, c/a = 1,20 angegeben worden¹⁰, weil nur Hochtemperatur-*Debye*aufnahmen von verhältnismäßig geringer Auflösung angefertigt worden waren. Der Befund, daß das Achsverhältnis c/a unterideal ist, ist befriedigend, weil bei Cu₃As ebenfalls ein unterideales Verhältnis vorliegt, während das überideale Verhältnis bei Cu₁₀Sn₃ Schwierigkeiten für die Deutung bringen wird (s. u.). Auf die Cu₁₀Sn₃(h) Struktur gehen wir demnächst näher ein, sie ergibt sich durch Drittelung der Basismasche aus Cu₁₀Sn₃(m).

Diskussion

Die Struktur von $Cu_{10}Sn_3(m)$ ist eng verwandt zur CuZn-Struktur der Beta-Messing-Phasen, wie man nach *Carlsson/Hägg*⁷ durch Vergleich der Pulveraufnahmen erkennt. Dieselbe Aussage gilt auch für Cu₃P und Cu₃As. Man kann, wie *Carlsson/Hägg* ebenfalls bemerkten, die CuZn-

¹⁰ K. Schubert und G. Brandauer, Z. Metallkde. 43, 262 (1952).

Struktur mit der Translationsgruppe von Cu₁₀Sn₃(m) beschreiben. Es befinden sich dann in einer Ebene parallel zur hexagonalen Basisebene drei Atome je Masche; es gibt 9 solcher Schichten je c-Achse, und die Schichten sind in der Folge cccccccc gestapelt. Diese Stapelfolge ist nicht so leicht zu ändern wie die Stapelfolge von Ebenen der Art (111) in der Cu-Struktur, weil hier im Gegensatz zur Cu-Struktur Atome einer Schicht n und einer Schicht n + 3 miteinander in Berührung stehen. Wenn aus bindungsmäßigen Gründen jedoch eine Stapelvariation erzwungen wird, müssen Verschiebungen der Atome in c(Cu10Sn3)-Richtung in Kauf genommen werden. Durch diese Verschiebungen werden die benachbarten Atomnetze verzerrt, was zur Vergrößerung der Elementarmasche (hier um den Faktor $\sqrt{3 a}$) führt. Diese Aussage zeigt also, daß die gesamte Strukturänderung gegenüber CuZn zurückgeführt werden kann auf eine Stapelvariation. Die Stapelvariation ist aber verursacht durch die Ortskorrelation der Elektronen, und zwar hier ebenso wie im Fall von Cu₃As durch die Ortskorrelation der äußeren d-Elektronen⁸. Als Typ der d-Elektronenkorrelation darf nach früheren Analysen eine A2- oder eine C11-Korrelation (tetragonal komprimierte A2-Korrelation) vorausgesetzt werden. Der metrische Vergleich mit Ortskorrelationsvorschlägen benachbarter Phasen legt die Kommensurabilität nahe $a/\sqrt{37} = d_{C11}$ oder $a/6 = d_{C11}$, wo a die Gitterkonstante und d den Elektronenabstand in der C11-Korrelation bedeuten und die quasihexagonale C11-Ebene mit der hexagonalen Cu₁₀Sn₃-Ebene zusammenfällt. Diese Annahme führt zu einer Rasterzahl $l_c = 7.5$ der C11-Korrelationsebenen (parallel zur Struktur-Basisebene) je c-Strecke. Die so hergeleitete Ortskorrelation führt, wie man nach einer früher geschilderten Methode¹¹ zeigen kann, zu einer Stapelfolge (hc)³, die aber nicht beobachtet wird. Nimmt man dagegen an, daß (aus einem noch nicht verstandenen Grunde) die Rumpfelektronenkorrelation um 7% gedehnt ist, dann kommt $l_c = 7$ und nach der genannten Methode die Stapelfolge cheche, die wirklich beobachtet wird, wenn man die Zuordnung der Struktur zu einer bestimmten Stapelfolge in der oben erwähnten Weise vorgenommen denkt. Für Cu₁₀Ge₃(h) braucht die Dehnungsannahme nicht gemacht zu werden.

Man darf in den obigen Zusammenhängen eine Bestätigung des Wahrheitsgehaltes des genannten Ortskorrelationsvorschlages sehen, zumal, da dieselbe Ortskorrelation ohne Dehnungsannahme auch bei Cu₃P die richtige Stapelfolge liefert. Was ist nun die Ursache der Strukturverschiedenheit von Cu₁₀Sn₃(m) und Cu₃P? Offensichtlich zeigt P einen höheren Valenzelektronenbeitrag, und die Strukturanalyse lehrt, daß Cu₁₀Sn₃(m) 26 und Cu₃P nur 24 Atome in der Zelle hat. Selbst wenn

¹¹ K. Schubert, Bull. Soc. fr. Min. Crist. 91, 575 (1968).

man für P nur 4 Elektronen je Atom einsetzt¹², ist bei Cu₃P die Valenzelektronenkonzentration größer als bei Cu₁₀Sn₃. Die Erscheinung, daß bei höherer Valenzelektronenkonzentration die Zahl der Leerstellen in Beta-verwandten Phasen zunimmt, ist seit Bradley¹³ wohlbekannt und wurde, wie oben erwähnt, von Nowotny¹⁻⁶ an ternären Phasen studiert. Für die Cu_{≈4}Sn(700° C)-Phase wurde sie von Knödler⁹ nachgewiesen; die dort gefundene Abhängigkeit der Leerstellenanzahl in der abgeschreckten Phase von der Valenzelektronenkonzentration ist gut verträglich mit der Regel von Norbury¹⁴, wonach ein Atom—Elektronen-Substitutionsprozeß stattfindet. Die Norbury-Regel ist ein direkter Ausdruck für die in den Betaphasen angenommene Ortskorrelation der Valenzelektronen¹⁵. Die Wirksamkeit des Norbury-Zusammenhanges bei den vorliegenden Strukturen zeigt, daß auch die Valenzelektronenkorrelation ähnlich wie in den Betaphasen anzunehmen ist.

Zum Schluß erhebt sich noch die Frage, warum Cu₁₀Sn₃(m) eine Stapeländerung gegenüber der CuZn-Struktur zeigt, die Phase Cu_{~4}Sn (700° C) aber nicht. Die höhere Stabilitätstemperatur von Cu_{~4}Sn bedingt, daß diese Phase eine höhere Entropie hat gegenüber $Cu_{10}Sn_3(m)$. Diese Entropie ist nicht nur Schwingungsentropie, sondern sie bezieht sich auch auf die Ortskorrelation der Elektronen. Die Entropie der Ortskorrelation kann erhöht werden durch "Verzwillingung", d. h. dadurch, daß das "Ortskorrelationsgitter" verschiedene Lagen im Kristall einnimmt. Durch die Ortskorrelationsverzwillingung wird die Ursache der Stapelvariation zerstört, d. h. die elektrostatischen Dipolfelder haben nicht mehr den langwelligen Aufbau wie in der Struktur ohne Ortskorrelationsverzwillingung, sondern einen kurzwelligen, so daß eine höhersymmetrische Kristallstruktur resultiert. Die hochsymmetrischen Strukturen wie Beta-Messing sind also in ihrer Bindungsbeziehung kompliziert, während die niedrigsymmetrischen Strukturen darin einfacher sind. Es ist danach nicht sinnvoll, bei der Berechnung des Bindungszustandes, wie es heute oft geschieht, von den einfachen metallischen Strukturen auszugehen; man sollte vielmehr bei gewissen komplizierten Strukturen (z. B. denen, die zur Auffindung des Zweikorrelationenmodells beitrugen) anfangen.

Die Deutsche Forschungsgemeinschaft unterstützte dankenswerter Weise diese Untersuchung. Herrn *T. Gödecke* und Frl. *G. Kümmerle* danken wir für experimentelle Unterstützung.

¹² K. Schubert, Kristallstrukturen zweikomponentiger Phasen, S. 191. Berlin-Göttigen-Heidelberg-New York: Springer. 1964.

¹³ A. J. Bradley und A. Taylor, Proc. Roy. Soc. Lond. A **159**, 56 (1937); Phil. Mag. **23**, 1049 (1937).

¹⁴ A. L. Norbury, J. Inst. Met. 65, 355 (1939).

¹⁵ Lit.¹², S. 126.